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Target Area

• Ubiquitous Computing (UbiComp);

– Based on RFID/NFC;

• Focus on electronic ticketing (e-ticketing).

→ Privacy protection.

TU Dresden, 12 June 2013 Privacy Protection in E-ticketing slide 4



E-ticket Taxonomy and Dissertation Focus
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E-ticketing in Public Transport

[Courtesy of MünsterscheZeitung.de]
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E-ticketing: A General Application Scenario
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Fare Collection Approaches in E-ticketing

Fare	collection

	approaches

1.	Electronic	Paper	Ticket
(EPT)

2.	Check-in/Check-out	based
(CICO)

a)	Pure	CICO b)	Seamless	CICO

i.	Walk	in/Walk	out
(WIWO)

ii.	Be	in/Be	out
(BIBO)

• Focus on CICO-based systems
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E-ticketing: Technologies and Standards

• RFID-based stack (proximity cards);

• NFC stack (NFC-enabled devices);

• Recently, CIPURSE by OSPT (Open Standard for
Public Transport).

RFID-based	E-Ticketing	Stack

Architecture

Data	Interfaces

Communication	Interface

ISO	EN	24014-1	(conceptual	framework)

EN	15320	(logical	level,	abstract	interface,	security)

EN	1545	(data	elements)

ISO/IEC	7816-4	(commands,	security)

ISO	14443	(parts	1-3	required)

The	NFC	Forum

Architecture

The	NFC	Forum	

Specifications

E-ticket

Smartcard
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Target Area: Summary

• E-ticketing systems for public transport;

• ”Smart ticket” (as opposed to online ticket);

• CICO for automated fare collection;

• Underlying technologies: RFID/NFC.
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E-ticketing: Concerns

• For transport companies

– High system development/deployment costs;
– Lack of well-standardized solutions;
– New infrastructure is a high risk investment;
– Possibly low Return of Investment (ROI).

• For customers

– Reluctance to using a conventional system in a new
way;

– Privacy concerns:
• Ubiquitous customer identification;
• Customer profiling (esp. unconsented);
• Increased surveillance potential.
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Privacy Protection: Motivation

• Rising privacy concerns in public;

• Motivation to invest in privacy for transport companies;

• A privacy-preserving solution is of mutual benefit for
both parties:

– Higher acceptance among customers;
– Transport companies retain competitiveness.
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Generic Privacy Threats in E-ticketing Systems

1. Unintended customer identification:

a) Exposure of the customer ID:

i. Personal ID exposure (direct identification);

ii. Indirect identification through the relevant object’s ID.

b) Exposure of a non-encrypted identifier during the
anti-collision session;

c) Physical layer identification (RFID fingerprinting).

2. Information linkage;

3. Illegal customer profiling.

→ A cross-layered set of countermeasures required.
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Protecting User Privacy: Problems

• Customer privacy is not in primary focus of
standardization effort;

• Several tailor-made solutions (in add-on fashion);

• No holistic approach treating privacy from an outset (in
real systems)

→ Privacy by Design is required.
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A Privacy-preserving E-ticketing System: Reqs

(1) Privacy

(a) Against terminals
Identification: no

Correlation: no

(b) Against back-end
Identification: no

Correlation: yes

(c) Against observers PII Derivation: no

(2) Billing

(a) Regular Billing Regular billing support

(b) Billing Correctness In accordance with fare policy

(3) Efficiency Check-in/out events handling
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A General System Architecture and Requirements:
An Overview
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A General System Architecture and Requirements:
An Overview (1)
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A General System Architecture and Requirements:
An Overview (2)

(1) Privacy

(b) Against back-end
Identification: no

Correlation: yes

... ...

Terminal	1

Terminal	2

Terminal	n

TerminalsE-tickets

Real-time Non-real-time

E-ticket	1

E-ticket	2

E-ticket	n

Back-end

Check-in/out Backbone	Network

TR	Processing:
		-	Singulation
		-	Billing
		-	Identification	

TU Dresden, 12 June 2013 Privacy Protection in E-ticketing slide 19



A General System Architecture and Requirements:
An Overview (3)
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A General System Architecture and Requirements:
An Overview (4)

(2) Billing

(a) Regular Billing Regular billing support
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A General System Architecture and Requirements:
An Overview (5)

(3) Efficiency Check-in/out events handling
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Main Goals/Research Questions

RQ: How to build a privacy-preserving e-ticketing system
with the following properties?

(1) Loose-coupling between front-end and back-end
(scaling);

(2) Offline e-ticket validation at the terminal side:

– Valid e-tickets remain anonymous to the terminal;
– Invalid e-tickets must be rejected.

(3) Privacy-preserving travel records processing in back-end:

– With regular billing support for personalized tickets;
– Preventing direct identification (pseudonymization).
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Important Evaluation Criteria

• Mutual authentication between terminals and e-ticket;

• E-ticket anonymity/untraceability against terminals;

• Trust assumptions (esp. concerning terminals);

• Back-end coupling (close/loose);

• Regular billing support.
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Solutions Taxonomy: Outline
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Solutions Taxonomy: Detailed
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Solutions Taxonomy: Close-coupled Systems
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Okubo et al. (OSK Protocol)
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Okubo et al. (OSK Protocol)

• Hash chain-based; two hash functions:

– H(): used for secret refreshment;
– G (): used for untraceability against eavesdroppers.

• Hash chain for the i th tag:
F : (i , k) 7→ r k

i = G
(
Hk−1

(
s init

i

))
.

GG

HHH

ai ai+1

si si+1

��

���Tag 
(E-ticket)

Reader 
(Terminal)
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OSK assessment

• Mutual authentication: no

• Untraceability against terminals: yes

• Terminals must be trusted: no

• Back-end coupling: tight

• Regular billing support: not considered

• Limited number of validations (by hash chain size k);

• Stateless by design;

• Serious scalability issues: O(kn).
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Revised Song & Mitchel’s Protocol (RSM)

E-ticketing	Systems

Close-coupled

Linear

Oxnf

Symmetric	Crypto

SAM	Protocol

[SongAMitchell]

TU Dresden, 12 June 2013 Privacy Protection in E-ticketing slide 32

[Song and Mitchell, 2011]



Revised Song & Mitchel’s Protocol (RSM)

• Each tag has a secret s and a pseudonym t : t = h(s);

• A keyed hash function serves for tag identification and
authentication (with tag pseudonym t as a key);

• The protocol is stateful;

• Refreshment of tag pseudonym and tag secret on
successful mutual authentication.
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RSM Assessment

• Mutual authentication: yes

• Untraceability against terminals: yes

• Terminals must be trusted: no

• Back-end coupling: tight

• Regular billing support: not considered

• Scalability issues remain: O(n).
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RSM-based One-time Pseudonym Protocol

• Precomputed look-up table of one-time pseudonyms for
tag identification:

– Tag identification complexity O(1);

• Tag authentication is performed similarly to RSM;

• Requires re-initialization when the pseudonyms pool is
exhausted.
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Heydt-Benjamin et al. (HCDF)
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Heydt-Benjamin et al. (HCDF)

• Based on e-cash, anonymous credentials, and proxy
re-encryption.

• Explicitly considers public transport (a holistic
framework);

• Two types of tickets:

(1) Temporally-bounded;
(2) Stored-value.
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Heydt-Benjamin et al. (HCDF), continued

• On enter:

– For temporally-bounded tickets: one-show validity
credential;

– For stored value tickets: accept entrance cookie CE .

• On exit:

– For temporally-bounded. tickets: the same;
– For stored value: reveal CE , calculate price (TA),

delete CE (T).

• On-the-fly price calculation on exit (for stored value
ticket).
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HCDF Assessment

• Mutual authentication: no (not explicit)

• Untraceability against terminals: yes

• Terminals must be trusted: no

• Back-end coupling: tight

• Regular billing support: no

• Involves asymmetric crypto on tag (ZKP).
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Close-coupled Systems: Summary
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Close-coupled Systems: Pros

• Terminal simplicity.

• Less trust in terminals.

• Simple infrastructure.
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Close-coupled Systems: Contras

• Scaling issues.

• Back-end must be online 24/7.

• Synchronization (statefulness, possibility of DoS
attacks).

• Back-end is a bottleneck and single point of failure.

TU Dresden, 12 June 2013 Privacy Protection in E-ticketing slide 42



Other Solutions Are Necessary

→ Some kind of decentralization is required.
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Solutions taxonomy: Loosely-Coupled Systems
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Loosely-Coupled Systems: Semi-offline
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Avoine et al. (ALM)
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Avoine et al. (ALM)

• Offline tag validation using challenge response;

• Reader-specific tag identification/authentication tuple
sets (TS);

• TS are precomputed by trusted back-end and uploaded
to readers;
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Avoine et al. (ALM): Keys

• Two key types:

– Long-term tag-specific key KT shared between
back-end and a tag (is not known to readers);

– Session key kTR is computed on-the-fly by a tag;

• kTR = f (KT , IDR , cR)

• At the reader side, kTR resides in TS (precomputed);

• kTR is bounded to a specific (reader, tag) pair.
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ALM Assessment

• Mutual authentication: yes

• Untraceability against terminals: no

• Terminals must be trusted: yes

• Back-end coupling: semi-coupled (counter sync)

• Regular billing support: not considered

• Scalability issues are shifted to the reader side:

– O(n) complexity to locally identify/authenticate a tag.
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Baldimtsi et al. (PAYG)
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Baldimtsi et al. (PAYG)

• Based on e-cash and anonymous credentials;

• Explicitly considers public transport;

• Single trip tickets only;

• Unique ID is encoded into the Trip Authorization Token
(TAT) against double spending.

– The knowledge of the encoded ID must be proved in
ZK on check-in.
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Baldimtsi et al. (PAYG): System Architecture

• Online vending machines (TAT issuing, refund
reimbursement)

• Offline check-in terminals:

– TAT validity check;
– Issuance of a Refund Calculation Token (RCT).

• Offline check-out terminals:

– Terminal-side fare calculation;
– Refund top-up.

• Variable pricing by attribute encoding;
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PAYG: Issues to Consider

• Refund-based system (refund aggregation into Refund
Token);

• Nuisance for users (additional effort for refund
reimbursement);

• All reimbursed refund tokens must be stored in back-end
to prevent refund double spending (for each single trip);

• Actual fare calculation during check-out (no complex
pricing schemes possible);
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PAYG: Assessment

• Mutual authentication: no

• Untraceability against terminals: yes

• Terminals must be trusted: no

• Back-end coupling: semi-coupled

• Regular billing support: no

• Involves asymmetric crypto on tag (ZKP).
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Loosely-Coupled Systems: Fully-offline
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Tan et al. (TanSL)
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Tan et al. (TanSL)

• A basis for a more profound protocol

– ALM by Avoine et al.

• Reader-specific tag access list (as in ALM);

• Authentication is bound to a concrete (reader, tag) pair;

• Fully offline tag identification and authentication;

• No regular secret refreshment (unlike ALM);
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TanSL: Assessment

• Mutual authentication: yes

• Untraceability against terminals: no

• Terminals must be trusted: yes

• Back-end coupling: fully offline

• Regular billing support: not considered

• Scalability issues are shifted to the reader side:

– O(n) complexity to locally identify/authenticate a tag.
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Loosely-coupled Systems: Summary
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Loosely-coupled Systems: Pros

• Loosely coupled system components

– Better scaling (compared to close-coupled systems);

• Terminal-side e-ticket validation (efficiency);
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Loosely-coupled Systems: Contras

• More intelligence at the terminal side is required;

• Contradicting requirements:

– Validate e-tickets;
– Without identifying/tracking them.

• Terminals operate on the tag data containing
identifiable information;

→ Privacy – validation trade-off.

• Decentralized infrastructure is harder to manage
(updates, uploads, etc.).
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State-of-the-art: Final Overview
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Criteria
The most relevant approaches Reviewed

PAYG[1] HCDF[2] SVW[3] GR[4] ALM[5] OSK[6] RSMP[7]

Explicitly cons. PT yes yes yes yes no no no

Anonym. against term. yes yes p no no yes yes

Untraceab. against term. yes yes p no no yes yes

Mutual authentication no no no no yes no yes

Crypto
Primitives
Used

Symmetric no yes yes yes yes no yes

Hash yes yes no yes no yes yes

Asymmetric yes yes p no no no no

Back-end
Coupling

Tight – yes – – – yes yes

Semi-coupl. yes – – yes yes – –

Loose – – yes – – – –

Tamp. resist. required ∅ ∅ p ∅ ∅ no no

Regular billing no no no ∅ ∅ ∅ ∅

Involves extern. device no no/p yes no no no no

BE is trusted no no yes yes yes yes yes

ATs are trusted no no yes yes yes no no

Revocation is possible yes yes yes yes yes yes yes

Dynamic extensibility yes yes yes no no yes no
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Back-end
Coupling

Tight – yes – – – yes yes

Semi-coupl. yes – – yes yes – –

Loose – – yes – – – –

Tamp. resist. required ∅ ∅ p ∅ ∅ no no

Regular billing no no no ∅ ∅ ∅ ∅

Involves extern. device no no/p yes no no no no

BE is trusted no no yes yes yes yes yes

ATs are trusted no no yes yes yes no no

Revocation is possible yes yes yes yes yes yes yes

Dynamic extensibility yes yes yes no no yes no



State of the Art: Focused

Criteria
The most relevant approaches Reviewed

PAYG[1] HCDF[2] SVW[3] GR[4] ALM[5] OSK[6] RSMP[7]

Anonymity terminals yes yes p no no yes yes

Untraceability terminals yes yes p no no yes yes

Mutual authentication no no no no yes no yes

Close-coupling no yes no no no yes yes

Regular billing no no no ∅ ∅ ∅ ∅

BE is trusted no no yes yes yes yes yes

ATs are trusted no no yes yes yes no no

Legend:
∅ – not considered;
p – partially provided;
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Recall: System Requirements

(1) Privacy

(a) Against terminals
Identification: no

Correlation: no

(b) Against back-end
Identification: no

Correlation: yes

(c) Against observers PII Derivation: no

(2) Billing

(a) Regular Billing Regular billing support

(b) Billing Correctness In accordance with fare policy

(3) Efficiency Check-in/out events handling

TU Dresden, 12 June 2013 Privacy Protection in E-ticketing slide 67



A Privacy-preserving E-ticketing System with
Regular Billing Support (PEB)

• Protect privacy while allowing various pricing schemes in
back-end;

• Pricing schemes are fully independent of system
architecture;

• A reasonable trade-off is allowed:

– In front-end. Different sessions between an e-ticket and
terminal/s are completely unlinkable;

– In back-end. Back-end may correlate different sessions
to an e-ticket pseudonym.
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Attacker Model

(1) (Outsider) No PII derivation by external observers
(front-end sessions).

(2) (Insider) No tracking and identification of valid e-tickets
by terminals.

(3) (Insider) No direct identification by back-end.

→ Insider/outsider with respect to the involvement into
the system flow.
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PEB: System Architecture

... ...

Terminal	1

Terminal	2

Terminal	n

TerminalsE-tickets

2.	Mutual	Authent.

3.	BL	Check

Update	BL

Real-time Non-real-time

1.	SC	Establishment
Send	TRE-ticket	1

E-ticket	2

E-ticket	n

Back-end

Check-in/out Backbone	Network

TR	Processing:

		-	Singulation

		-	Billing
	

External	TTP

	-	User	
			Identification
		-	End	Billing	

Transport	Authority	(TA)

yBill,	Pseudonym)

Send	Bill
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PEB: Pseudonymization

• For each e-ticket, TTP creates a static pseudonym PT
i ;

– Mapping PT
i 7→ ID is kept secret by TTP;

• PT
i is sent to TA;

• TA includes it into its static pseudonym set: PT
i ∈ PT ;

• TA, therefore, operates only on pseudonyms in PT ;
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PEB: Pseudonymization (continued)

• TA possesses an asymmetric key pair:
(
k+

ta, k
−
ta

)
;

• Front-end e-ticket pseudonyms: PA
i = Ek+

ta

(
PT

i

)
– Required for terminal-side black list checking.

• E-tickets are parameterized with PA
i ;

• E-ticket ↔ terminal: a session pseudonym on each
interaction (anti-tracking): SPj = Ek+

ta

(
PA

i · rj
)
.
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PEB: Pseudonymization (continued)

... ...

Terminal	1

Terminal	2

Terminal	n

TerminalsE-tickets

2.	Mutual	Authent.

3.	BL	Check

Update	BL

Real-time Non-real-time

1.	SC	Establishment
Send	TRE-ticket	1

E-ticket	2

E-ticket	n

Back-end

Check-in/out Backbone	Network

TR	Processing:

		-	Singulation

		-	Billing
	

External	TTP

	-	User	
			Identification
		-	End	Billing	

Transport	Authority	(TA)

)Bill,	Pseud.D Send	Bill

SP1
SP2

SPj

...

Decrypt Pi
T

(Bill,	Pi
T)

Decrypt IDPi
T

(Bill,	ID)
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PEB: Privacy-preserving BL Checking

• Based on the inherent homomorphism of an encryption
scheme in use: PA

i = Ek+
ta

(
PT

i

)
;

• Malleability property: E (x · r) = E (x)r ;

• On validation, an e-ticket presents a tuple to a terminal:
SPT ←

(
E (x · r),E (r)

)
;

• Black list: {y : y ∈ BL};

• Check SPj against the BL:
∀y ∈ BL,E (r) ∈ SPT : c ← E (r)y

c
?
= E (x · r) ∀c ∈ C .
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BL Checking: A Choice of a Suitable Encryption

• Based on the discrete exponentiation function

• E (x) = g x (mod p)

• Malleability property:

E (x · r) = g (x ·r)

=
(
g x

)r

= E (x)r .

(mod p)

• Other inherently homomorphic deterministic schemes
possible.
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PEB: Discussion

• Loosely-coupled system;

• Mutual identification due to group signatures;

• Revocation: black lists:

– Encrypted black lists possible;
– Alternatively, dynamic accumulators can be used [8].

• To enhance performance, anonymity set can be reduced
in a controllable way;

• Our system fully satisfies the requirements.
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State-of-the-art Overview and PEB

Criteria
The most relevant approaches Reviewed

PAYG[1] HCDF[2] SVW[3] GR[4] ALM[5] OSK[6] RSMP[7] PEB

Anonymity terminals yes yes p no no yes yes yes

Untraceability terminals yes yes p no no yes yes yes

Mutual authentication no no no no yes no yes yes

Close-coupling no yes no no no yes yes no

Regular billing no no no ∅ ∅ ∅ ∅ yes

BE is trusted no no yes yes yes yes yes no

ATs are trusted no no yes yes yes no no no

Legend:
∅ – not considered;
p – partially provided;
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Current Progress

• The first results were presented at PECCS-2013 in
Barcelona (see [9]);

• The paper presenting the core architecture has been
accepted to the IFIP-2013 Summer School.

• Contacts with industry: DVB are interested, Secunet;

• Supervision of two students helping to validate the
concept.
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Thank you for your attention!
Questions? Comments?

Suggestions?
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Backup Slides
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E-ticketing: Main Advantages

• For transport companies

– decrease in system maintenance costs;
– significant reduction of payment handling costs;
– fare dodgers rate improvement;
– better support of flexible pricing schemes;
– support of multiapplication/nontransit scenarios;
– a high interoperability potential.

• For customers

– faster verification of an e-ticket;
– ”pay as you go”;
– flexible pricing schemes;
– increased usability.
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Generic Countermeasures

Threats Countermeasures

1. Unintended customer identification:

a) Exposure of the customer ID:

i. Personal ID exposure (direct) Privacy-respecting authentication; ID encryp-
tion/randomization; access-control functions [10]

ii. Indirect identification ID encryption

b) Unencrypted ID during anti-collision Randomized bit encoding [11]; bit collision mask-
ing [12, 13] (protocol dependent)

c) PHY-layer identification Shielding; switchable antennas [14]

2. Information linkage Anonymization (in front-end and back-end): threat 1
countermeasures; privacy-respecting data processing

3. Illegal customer profiling Privacy-respecting data storage (back-end); the same
as in threat 1

• Difficult to apply in a joint fashion.
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Revised Song & Mitchel’s Protocol (RSM) [7]

S T
[T : s, t, ŝ, t̂] [t]
Generate r1

r1−−− →
Generate r2
M1 = t⊕ r2
M2 = ft(r1‖r2)

r1,M1,M2← −−−
Find t in the DB
s.t. M2 = ft(r1‖(M1 ⊕ t))

r2 = M1 ⊕ t
M3 = s⊕ ft(r2‖r1)

r1,M3−−− →
ŝ← s s = M3 ⊕ ft(r2‖r1)
t̂← t If h(s) = t,
s← (s� l/4)⊕ (t� l/4)⊕ r1 ⊕ r2 t← h((s� l/4)⊕ (t� l/4)⊕ r1 ⊕ r2)
t← h(s)

Figure 1: The revised SM protocol

• The look-up table contains a number of entries for each tag, one for each
element of a tag-specific hash-chain. Elements from this hash-chain are
used as tag identifiers (and as database keys to identify tags). A keyed
hash function is used to generate each hash-chain, using a secret key shared
by the tag and server. The hash-chain length, m, determines the number
of tag identifiers that can be produced using any one key.

• The operation of the protocol (described in detail in section 5.3) can be
divided into three cases, as follows (see also Table 1):

1. Case 1: for each of the first m− 1 queries of a tag, the protocol pro-
cess only involves tag authentication and requires just two messages.
To authenticate a tag, the server searches a look-up table, taking
constant time.

2. Case 2: on the mth query of a tag, the protocol updates the secrets
shared by the server and tag, as well as providing tag authentication.
This process requires an additional message. The server takes O(1)
work to authenticate a tag, as in case 1.

3. Case 3: if a tag is queried more than m times, which should not nor-
mally happen, then a revised version of the SM protocol is performed;
this requires the server to perform a linear search with complexity
O(n).

• For server authentication (in cases 2 and 3), for each tag the server holds
a secret s that only it knows, as in the schemes presented in [12, 8].

11
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HCDF: Session Description

Authorized Reader (F ) Ticket (TX)

t //

r ∈R {0, 1}ln
S ← t||r

C ← E
K+

TA
(S)

Coo

C′ ← RE(C)
S ← D

K−
F
(C′)

oo ES(transaction) //

Fig. 2. Authentication of reader to ticket using re-encryption (RE) allows F to trans-
late ciphertext encrypted with K+

TA to ciphertext which can be decrypted with K−
F .

Thus the private key of TA remains offline. This re-encryption can only happen if F
possesses an appropriate non-expired delegation key. Proof of possession of this delega-
tion key is the mechanism by which F demonstrates that it is authorized. This protocol
provides a secure channel while matching the resource constraints of the different de-
vices.

demonstrates that it is authorized by using its delegation key to transform C
into a form which it can then decrypt with its own private key. The fact that F is
then able to reply to TX with a well-formed message encrypted with session-key
S demonstrates that F is authorized (possesses a non-expired delegation key).

Once TX is satisfied that it is talking to an authorized reader it updates its
logical clock to value t. If it ever receives a communication with a timestamp less
than t, the communication will be assumed to be adversarial, and the protocol
will be aborted. TX also uses t to refuse to divulge any information about cookies
it holds which have expired.

Since t increases monotonically (which can be monitored by HPDs, and dis-
crepancies will also be eventually caught by passive transponders) and r is chosen
by TX, neither F nor TX can cheat at this protocol in such a way as to make a
re-play attack possible. S can only be decrypted by a reader with an unexpired
delegation key (up to the strength of the underlying public-key and re-signature
cryptosystems). This suffices for the security (up to underlying primitives) of
the challenge-response.

6.2 createT icket(TV, TX,U) → TX

Once the session key S is negotiated as discussed above, a stored-value ticket can
be created by calling CreateTokens(TV, TX, ν) resulting in a new wallet which
is then stored on TX. The protocol for creation of a temporally bounded ticket
is similar, except that in place of CreateTokens, FormNym and GrantCred
must be executed with respect to some time interval λ which the user has chosen

• Session key generation: S ← t||r ;

• Exchange S using non-expired delegation key
(re-encryption);
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Avoine et al. (ALM)

Reader R Tag T
IdR, cR IdT ,KT , cT

IdT , kTR = EKT (IdR, cR)

(1) IdR, cR, nR−−−−−−−−−−−−→
EkTR

(nR,nT )
←−−−−−−−−−−−− (2)

(3) nT−−−−−−−−−−−−→ (4)

Fig. 6. Authentication protocol.

Back-End B Reader R
IdR, IdT ,KT , cB IdR, cR

IdT , kTR = EKT (IdR, cR)

(1)
IdT , cup, kTRup−−−−−−−−−−−→ (2)

Fig. 7. Key update protocol.

Initialization. When the system is set up, each tag T is assigned with the following
values:

– a unique identifier IdT ,

– a long-term key KT ,

– three counters cB , cR and cT , initially synchronized and all equal to zero.

And during this set up, each reader R is assigned with the following values:

– a unique identifier IdR,

– for every tag T , its identifier and an encryption of its secret: IdT , kTR = EKT
(IdR, cR).

B stores IdR, IdT , KT and cB .

R stores IdR, cR, IdT and kTR = EKT
(IdR, cR).

T stores IdT , KT , cT .

Authentication. The authentication protocol consists of four steps (see Fig. 6):

(1) The reader sends to the tag its identifier IdR, the counter cR and a nonce nR.

(2) The tag checks the value cR it receives:

– If cR ≥ cT , it computes the key kTR = EKT
(IdR, cR). Then, it picks a nonce

nT and answers the encryption EkTR
(nR, nT ) to the reader.

– If cR < cT , the protocol aborts.

(3) The reader decrypts the received message with the symmetric key kTR, and
verifies the value nR. Then, it sends to the tag the recovered value nT .

(4) T checks the validity of nT : if so and cR > cT , it updates cT to the value cR
(cT ← cR).

• TS ← {(IDT , kTR)} ∀T

• kTR ← EKT
(IDR , cR)
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Tan et al. (TanSL)

(5) For every entry T in L, the reader computes H ′ = h(h(IdR||tT )||nR||nT ) with
H ′ = Hb′||He′, and checks if Hb matches with Hb′:
– If so and k ≤ �−b

2 , it sends to T the answer ansR to the question quesR.
Thus, ansR represents the actual bits in positions ques1R, ques

2
R, . . . , ques

k
R

of He′.
– Else it sends ansR = rand where rand is a random bit string of length k.

In turn, it sends a question quesT = (ques1T , ques
2
T , . . . , ques

k
T ), built like quesR.

(6) The tag T checks if ansR is correct:
– If so and {∀x, y, quesxR �= quesyT }, it sends to R the answer ansT to the

question quesT .
– Else it sends ansT = rand.

(7) The reader R verifies the answer ansT .

Reader R Tag T
IdR, L = [IdT : h(IdR||tT )] IdT , tT

(1) request−−−−−−−−−−−→
nT←−−−−−−−−−− (2)

(3) IdR, nR−−−−−−−−−−→
Hb, quesR←−−−−−−−−−− (4)

(5) ansR, quesT−−−−−−−−−−−→
(7)

ansT←−−−−−−−−−−− (6)

Fig. 5. TanSL protocol.

4 Security Analysis

We now study the security of all the previous protocols in the different scenarios
defined in Section 2.

4.1 Tag Impersonation

As authentication protocols are designed by nature to be secure in the context of
Scenario 1, we only focus in Section 4.1 on Scenario 2.

Scenario 2. For SK-based challenge/response protocols, once the adversary com-
promised a reader, she knows all the secrets stored by the reader. She is so able to
impersonate any tag.

For signature schemes and zero-knowledge protocols (including GPS), the private
key used to answer to the challenges is only known by the tag. Thus even if the
adversary compromises a reader, she does not know the tags’ private keys. She
cannot impersonate them.

Regarding WIPR, an adversary who compromised a reader R knows its public
and private keys (n and (p, q)) and the tags’ identifiers. The result is that she will
be able to impersonate any tag to every reader.

For the TanSL protocol, an adversary can obtain from a compromised reader R
its identifier IdR and the list L containing all (IdT : h(IdR||tT )), for every tag T .
The adversary will not be able to impersonate a tag T in front of any other non-
compromised reader R′. Indeed, she does not know the tag’s secret tT , thus she is
not able to compute the symmetric key h(IdR′ ||tT ) shared between R′ and T .
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Client-Side Fare Calculation: Toll Pricing

• Decentralized approach to fare calculation;

• Privacy preservation by client-side fare calculation;

• Enforcement through spot checks, ZKP of the validity
of the committed values, etc.;

• The price calculation flow may be fairly complex
(involves several noncolluding parties);

• Substantial computational and operational overhead for
users;

→ Does not suit well for a target e-ticketing system.
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